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SROCC Framing and context

Schematic illustration of key components and changes of the ocean and
cryosphere, and their linkages.
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Cryosphere: the sphere with certain thickness and temperature below 0 °C on 2
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Representative statistics for cryospheric components indicating their general significance

Ice on Land

Percent of Global Land
Surface

Sea Level Equivalentk (metres)

Antarctic ice sheet?
Greenland ice sheet?
Glaciers ¢

Terrestrial permafrostd
Seasonally frozen ground®

Seasonal snow cover
(seasonally variable)f

Northern Hemisphere freshwater
(lake and river) iceP

Total™

8.3
1.2
0.5
9-12
33

1.3-30.6

1.1

52.0-55.0%

58.3

7.36

0.41
0.02-0.10d

Not applicable

0.001-0.01

Not applicable

~66.1

Ice in the Ocean

Percent of Global Ocean
Areal

Volume!' (103 kmg3)

Antarctic ice shelves

Antarctic sea ice, austral summer
(spring)”

Arctic sea ice, boreal autumn
(winter/spring)"

Sub-sea permafrosth

Total®

0.459

0.8 (5.2)

1.7 (3.9)

~0.8
5.3-7.3

~380

3.4 (11.1)

13.0 (16.5)

Not available
(IPCC, 2013)




Past and future changes in the ocean and cryosphere Observed and modelled historical changes

Historical changes (observed and modelled) and projections under RCPZ.6 and RCPE.S for key indicators
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Figure 2.1 | Distribution of mountain areas (orange shading) and glaciers (blue) as well as regional summary statistics for glaciers and permafrost in
mountains. Mountains are distinguished based on a ruggedness index (=>3.5), a logarithmically scaled measure of relative relief (Gruber, 2012). Eleven distinct regions with
glaciers, generally corresponding to the primary regions in the Randolph Glacier Inventory, RGI v6.0 (RGI Consortium, 2017) are outlined, although some cryosphere related
impacts presented in this chapter may go beyond these regions. Region names correspond to those in the RGL. Diamonds represent regional glacier area (RGI 6.0) and circles
the permafrost area in all mountains within each region boundary (Obu et al, 2019). Histograms for each region show glacier and permafrost area in 200 m elevation bins as
a percentage of total regional glacier/permafrost area, respectively. Also shown is the median elevation of the annual mean 0°C free-atmosphere isotherm calculated from the
ERA-5 re-analysis of the European Centre for Medium Range \Weather Forecasts over each region’s mountain area for the period 2006-2015, with 25-75% quantiles in grey.
The annual 0°C isotherm elevation roughly separates the areas where precipitation predominantly falls as snow and rain. Areas above and below this elevation are loosely
referred to as high and low elevations, respectively, in this chapter.
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Figure 2.3 | Projected change (1986-2005 to 2031-2050 and 2080-2099) of mean winter (December to May; June to August in Subtropical Central
Andes) snow water equivalent, winter air temperature and summer air temperature (June to August; December to February in Subtropical Central
Andes) in five high mountain regions for RCP8.5 (all regions) and RCP2.6 (European Alps and Subtropical Central Andes). Changes are averaged over
500 m (a,b,c) and 1,000 m (d,e) elevation bands. The numbers in the lower right of each panel reflect the number of simulations (note that not all models provide snow
water equivalent), For the Rocky Mountains, data from NA-CORDEX RCMs (25 km grid spacing) driven by Coupled Model Intercomparison Project Phase 5 (CMIP5) General
Circulation Models (GCMs) were used (Mearns et al, 2017). For the European Alps, data from EURO-CORDEX RCMs (12 km grid spacing) driven by CMIPS GCMs were used
(Jacob et ak, 2014), For the other regions, CMIPS GCMs were used: Zazulie (2016) and Zazulie et al. (2018) for the Subtropical Central Andes, and Terzago et al (2014)
and Palazzi et al (2017) for the Hindu Kush and Karakoram and Himalaya. The list of models used is provided in Table SM2.8.
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Observed ice sheet mass balance changes SKILG
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Figure 3.7: (a) Cumulative Ice Sheet mass change, 1992 to 2016, (after Bamber et al., 2018; The IMBIE Team, 2018).
(b) Greenland Ice Sheet mass change components from surface mass balance (orange) and dynamic thinning (blue)
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Observed Increasing in ground temperature of permafrost
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Figure 2.5: Mean annual ground temperature from borcholes in debris and bedrock in the European Alps, Scandinavia
and High-Mountain Asia. Temperatures differ between locations and warming trends can be interspersed by short

periods of cooling. One location shows degrading of permafrost. Overall, the number of observed boreholes is small
and most records are short. The depth of measurements is approximately 10 m, and years without sufficient data are
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Changes in Snow cover, permafrost, runoff in Arctic
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Figure 3.10: Schematic of important land surface components influenced by the Arctic terrestrial cryosphere (centre):
permafrost (1); ground ice (2); river discharge (3); abrupt thaw (4); surface water (5); fire (6); tundra (7); shrubs (8);
boreal forest (9); lake ice (10); seasonal snow (11). Left column: time series of snow cover extent anomalies in June
(relative 1981-2010 climatology) from 5 products based on the approach of Mudryk et al. (2017); permafrost
temperature change normalized to a baseline period (Romanovsky et al., 2017) and runoff from northern flowing
watersheds normalized to a baseline period (1981-2010) (Holmes et al., 2018). Right column: CMIP5 multi-model
average for different Representative Concentration Pathway scenarios for June snow cover extent (based on Thackeray
et al., 2016), area of near-surface permafrost, and runoff to the Arctic Ocean (based on McGuire et al., 2018).
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Summary: Observed and Projected Changes

€ Over the last decades, global warming has led to widespread shrinking of the
cryosphere, with mass loss from ice sheets and glaciers (very high confidence),
reductions in snow cover (high confidence) and Arctic sea ice extent and
thickness (very high confidence), and increased permafrost temperature (very
high confidence).

€ Glacier mass loss, permafrost thaw, and decline in snow cover and Arctic
sea ice extent are projected to continue in the near-term (2031-2050) due to
surface air temperature increases (high confidence), with unavoidable
consequences for river runoff and local hazards (high confidence). The
Greenland and Antarctic Ice Sheets are projected to lose mass at an
increasing rate throughout the 21st century and beyond (high confidence).
The rates and magnitudes of these cryospheric changes are projected to
increase further in the second half of the 21st century in a high greenhouse
gas emissions scenario (high confidence). Strong reductions in greenhouse
gas emissions in the coming decades are projected to reduce further
changes after 2050 (high confidence).

IPCC, 2019: Summary for Policymakers
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Observed regional impacts from changes in the ocean and the cryosphere
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Glacier area at peak water (%)

&0
20 |
0

40

20 ¢

o

|
A0 |
|

20 |

1980

0l

& |
20 |
o

1980

Global-scale g =]
modelling:

— .. 8§ l

2000

RCP2.6

2000 2020 2040 2060 2080

Low Latitudes

2100

OO Oy

BEIOP
Central Europe
Caucasus

“Western Canada

North Asia

New Zealand

Scandinavia

M

0% G0 O
High Mountain Asia

B
= Iceland

Southern Andes

=]
— =
L=l
-t 0] B o N .
O

- Alaska

2020 2040 2060 2080 2100

RCP2.6 RCPES
=100 km!

ea
0-10 km? (3{655

1980 2000 2020

e . Glacler | case studies:

RCP8.5

2000 2020 2040

OSSO0

1980 2060 2080

Low Latitudes

(5% ) 5]
Central Europe
Caucasus

New Zealand
=
Ml _

Scandiﬁavia

sl

DO QLU0 O

A

Hig Mountain Asia

—_— T

= __|
Iceland

—1 |

Southern Andes

- ~ Alaska

2040 2060 2080 2100
Reglonal Local / single glacler RCP2ZE O O
o ( RCPES O O

010 10-100 »100kmt Other OO

2100

&

a0

120

&0

20

Timing of peak water from glaciers in
different regions under two emission
scenarios for Representative Concentration

Pathways (RCPS) (RCP2.6 and RCP8.5).
Peak water refers to the year when annual runoff from
the initially glacierised area will start to decrease due
to glacier shrinkage after a period of melt induced
increase. The bars are based on Huss and Hock (2018)
who used a global glacier model to compute the runoff
of all individual glaciers in a region until year 2100
based on 14 General Circulation Models (GCMs).
Depicted is the area of all glaciers that fall into the
same 10-year peak water interval expressed as a
percentage of each region's total glacier area, i.e., all
bars for the same RCP sum up to 100% glacier area.
Shadings of the bars distinguish different glacier sizes
indicating a tendency for peak water to occur later for
larger glaciers. Circles mark timing of peak water from
individual case studies based on observations or
modelling (Table SM2.10). Circles refer to results
from individual glaciers regardless of size or a
collection of glaciers covering <150 km? in total, while
triangles refer to regional-scale results from a
collection of glaciers with >150 km? glacier coverage.
Case studies based on observations or scenarios other
than RCP2.6 and RCP8.5 are shown in both the left
and right set of panels.



Future cryospheric changes
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Modeled net soil carbon pool changes in Arctic permafrost
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Figure 3.11: Estimates of cumulative net soil carbon pool change for the northern circumpolar permafrost region by

2100 following medium and high emission scenarios (e.g. RCP4.5 and RCP8.5 or equivalent). Cumulative carbon

amounts are shown in Gigatons C (1 Gt C=1 billion metric tons), with source (negative values) indicating net carbon
movement from soil to the atmosphere and sink (positive values) indicating the reverse. Some data-constrained models
differentiated CO: and CHy; bars show total carbon by weight, paired bar with * indicate COz-equivalent, which takes

into account the global warming potential of CHs. Ensemble mean bars refer to the model average for the Permafrost

Carbon Model Intercomparison Project [5S models]. Bars that do not start at zero are in part informed by expert

assessment and are shown as 95%C]1 ranges; all other bars represent model mean estimates. Data are from '(Schuur et

al., 2013); *(Schaefer et al., 2014) [8 models]; *(Schuur et al., 2015); *(Koven et al., 2015; Schneider von Deimling et =

al., 2015; Walter Anthony et al.. 2018); *(MacDougall and Knutti, 2016; Burke et al., 2017a; Kleinen and Brovkin, i=I9E

2018); %(McGuire et al,, 2018) Meredith et al., 2019



Changes in public infrastructure damage costs by 2100 in Alaska
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Figure 3.12: Changes in public infrastructure damage costs in cumulative SUSD by 2100 in Alaska under different
emission scenarios. The inset showing airports, railroads, and pipelines has a different in scale than roads, buildings,
and the total. Dark shades represent climate-related costs of impact with no engineering adaptation measures, whereas
light shades represent the cost savings after engineering adaptation (figure modified from Melvin et al., 2017)
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Observed Impacts

€ Cryospheric changes have impacted terrestrial and freshwater species and
ecosystems in high mountain and polar regions through the appearance of land
previously covered by ice, changes in snow cover, and thawing permafrost.
These changes have contributed to changing the seasonal activities,
abundance and distribution of ecologically, culturally, and economically
important plant and animal species, ecological disturbances, and ecosystem
functioning (high confidence).

€ Since the mid-20th century, the shrinking cryosphere in the Arctic and high-
mountain areas has led to predominantly negative impacts on food security,
water resources, water quality, livelihoods, health and well-being, infrastructure,
transportation, tourism and recreation, as well as culture of human societies,
particularly for Indigenous peoples (high confidence). Costs and benefits have
been unequally distributed across populations and regions. Adaptation efforts
have benefited from the inclusion of Indigenous knowledge and local knowledge
(high confidence).



Project Risks

€ Future land cryosphere changes will continue to alter terrestrial and
freshwater ecosystems in high-mountain and polar regions with major shifts
in species distributions resulting in changes in ecosystem structure and
functioning, and eventual loss of globally unique biodiversity (medium
confidence). Wildfire is projected to increase significantly for the rest of this
century across most tundra and boreal regions, and also in some mountain
regions.

€ Future cryosphere changes on land are projected to affect water resources
and their uses, such as hydropower (high confidence) and irrigated
agriculture in and downstream of high-mountain areas (medium confidence),
as well as livelihoods in the Arctic (medium confidence). Changes in floods,
avalanches, landslides, and ground destabilization are projected to increase
risk for infrastructure, cultural, tourism, and recreational assets (medium
confidence).
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Key messages

€ Impacts of climate-related changes in the ocean and cryosphere
increasingly challenge current governance efforts to develop and
Implement adaptation responses from local to global scales, and in
some cases pushing them to their limits. People with the highest
exposure and vulnerability are often those with lowest capacity to
respond (high confidence) .

€ The far-reaching services and options provided by ocean and
cryosphere-related ecosystems can be supported by protection,
restoration, precautionary ecosystem-based management of renewable
resource use, and the reduction of pollution and other stressors (high
confidence). Integrated water management (medium confidence) and
ecosystem-based adaptation (high confidence) approaches lower
climate risks locally and provide multiple societal benefits. However,
ecological, financial, institutional and governance constraints for such
actions exist (high confidence), and in many contexts ecosystem-based
adaptation will only be effective under the lowest levels of warming (high
confidence).



Key messages

Enabling climate resilience and sustainable development depends
critically on urgent and ambitious emissions reductions coupled with
coordinated sustained and increasingly ambitious adaptation actions
(very high confidence). Key enablers for implementing effective
responses to climate-related changes in the ocean and cryosphere
Include intensifying cooperation and coordination among governing
authorities across spatial scales and planning horizons.

Education and climate literacy, monitoring and forecasting, use of all
available knowledge sources, sharing of data, information and
knowledge, finance, addressing social vulnerability and equity, and
Institutional support are also essential. Such investments enable
capacity-building, social learning, and participation in context-specific
adaptation, as well as the negotiation of trade-offs and realisation of
co-benefits in reducing short-term risks and building long-term
resilience and sustainability (high confidence).



Framework of Cryospheric Science

Sustainability

N

Applied research

R\S\“

Adaptation

gea \eve!

Applied basic
research

hermo\«\a\'\ﬂe

\ areutatio”

Impacts

Sﬂov

v

‘ Cover Ice sheet
Glacier

Frozen ground ' Changes

River/lake ice

Qinetal. 2017, NSR

Basic research



Cryospheric Change and Sustainable Development
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